Celestial mechanics and polarization optics of the Kordylewski dust cloud in the Earth-Moon Lagrange point L5:

Imaging polarimetric new evidence for the existence of Kordylewski dust cloud

Gábor Horváth, Judit Slíz-Balogh, András Barta

Environmental Optics Laboratory, Physical Institute, Eötvös University, Budapest

Circular planar three-body problem: Lagrange points

Leonhard Euler (1767): points L1, L2, L3 are unstable

Joseph-Louis Lagrange (1772): points L4, L5 are (un)stable

If $Q = m_{\text{smaller}}/(m_{\text{smaller}} + m_{\text{larger}}) < Q^* = 0.03852$, then L4 and L5 are stable.

If $Q \ge Q^*$, then L4 and L5 are unstable.

 $Q = m_{\text{Moon}}/(m_{\text{Moon}} + m_{\text{Earth}}) = 0.0123 < Q^* = 0.03852,$ therefore L4 and L5 of the Earth and Moon are stable.

5. ábra Az instabil L₁, L₂ és L₃ Lagrange-pontok közeléből zérus kezdősebességgel indított egy-egy porrészecske pályájának kezdeti szakaszai.

Unstable L1 Lagrange point

Unstable L2 Lagrange point

Unstable L3 Lagrange point

Unstable L4 Lagrange point

 ábτα A μ > μ_o választással instabillá tett L₄ Lagrange-féle librációs pont közeléből, a 6. ábτα kezdő- és peremfeltételeivel megegyezően induló porrészecske pályájának kezdeti szakasza.

Stable L4 Lagrange point

B₁

 $\mu = 0.01$

B₂

6. ábra A $\mu < \mu_o$ választással stabillá tett L₄ Lagrangeféle librációs pont közeléből nulla kezdősebességgel induló porrészecske hurkokból álló librációs pályájának kezdeti szakasza.

Asteroids in the stable L4 and L5 points of the Solar system

Asteroids around the L4 and L5 points:

Jupiter - Sun (L4, L5 : many thousands asteroids)

Mars - Sun (L4: 1 asteroid, L5: 3 asteroids)

Neptune - Sun (L4: 6 asteroids, L5: 1 asteroid)

Earth - Moon (L5: 1 dust cloud?)

Simulated particles of the Sun-Jupiter system in a co-rotating coordinate system

Kazimierz Kordylewski (1903 - 1981)

L4 and L5 points of the Earth-Moon system are stable -> dust clouds?

Kazimierz Kordylewski in Krakow, 1961

Photometric detection of the dust cloud by Kazimierz Kordylewski in 1961

* PORHOLD

3. ábra Az állandó fényintenzitáshoz tartozó görbék serege ([8] alapján) a Föld-Hold rendszerben. Az egyes görbékhez tartozó számok a fényintenzitást mutatják magnitúdóban. Az L₅ librációs pont az ún. ellenfény közelében van, s ez az ellenfény okozza a központi kifényesedést. Jól látható az L₅ stabil librációs pont körüli két kidudorodás a görbeseregben, ami a környezetnél nagyobb fényintenzitás miatt a bolygóközi por helyi sűrűsödésére utal. Elsőnek Kordylewski azonosította ezt a két sűrűsödési gócot a Föld porholdjaiként.

Earlier attempts to detect the Kordylewski dust cloud (KDC) around the L5 point

NASA (1966): found the KDC with naked-eye observations from an airplane

Roosen (1966, 1968): did not find the KDC by photography

Wolff (1967): did not find the KDC by photography from an airplane

Roach (1975): found the KDC with an angular diameter of 6°

Valdes & Freitas (1983): found nothing by photography

Winiarski (1989): observed the KDC by telescope

Japanese HITEN satelite (1992): did not find particle aggregation

Computer modelling of dust cloud formation around the L4 and L5 points of the Earth-Moon system with 1 860 000 particles and the Sun in 3 dimensions

Evolution of the computer-modelled Kordylewski dust cloud in 3 dimensions for 10 years

Density of the Kordylewski dust cloud simulated around the L5 point of the Earth-Moon system versus time for 1 860 000 particles

Evolution of simulated dust clouds around the L4 and L5 points of the Earth-Moon system

Video clip

Astronomical observatory of Judit Slíz-Balogh in Balatontördemic

FORNAX 100 mechanics

MEADE 16" f/10 ACF

GPU 132/1050

Tokina AF 300/2.8 teleobjective

Samyang T3/100 teleobjective

Moravian G3-11000 ABG CCD

Judit Slíz-Balogh

Position of the L5 point of the Earth-Moon system: 23:29:67 UT, 17 August 2017

The Kordylewski dust cloud in the L5 Lagrange point of the Earth and Moon detected by imaging polarimetry (A) on 17 August (23:29:67 UT) and (B) on 19 August (01:14:15 UT) 2017

Imaging polarimetry of the Kordylewski dust cloud on 17 and 19 August 2017

Control measurements:

(A) without L5, but with zodiacal light (sunlight scattered by zodiacal dust in the Ecliptic), (B) cirrus cloud, (C) condensation trail of an airplain

Patterns of the Kordylewski dust cloud

Computer modelling

Degree of linear polarization

Angle of polarization

Position of the simulated Kordylewski dust cloud at 01:14 UT on 19 August 2017

Thank you for your attention!

