Weakly nonlocal thermodynamics and

Newtonian gravitation

Ván Péter

MTA wîltarer Research Centre for Physics,
 Department of Theoretical Physics; BME, Department of Energy Engineering; Montavid Thermodynamic Research Group

Barcelona, 21/05/2019

Collaboration with Sumiyoshi Abe and Robert Kovács

Outline

(1) About the origin of evolution equations
(2) Extensivity
(3) Newtonian gravitation
(4) Eötvös 100

Evolution with dissipation

Variational principles

- Ideal materials without dissipation
- Dissipation potentials? Gyarmati principle?
- There are many different variational principles for dissipative processes

Mixed strategies

- Phase fields, Ginzburg-Landau
- GENERIC

Pure thermodynamics?

- The heuristic road: thermostatics and the separation of divergences
- The rigorous way: Coleman-Noll and Liu procedures
- Rigorously blocked? Stability and material frame indifference

Methods from thermodynamics

Pure thermodynamics? Extended and internal variables

- The heuristic road: thermostatics and the separation of divergences
- The rigorous way: Coleman-Noll and Liu procedures. Blocked?

Benchmarks

- Ideal processes, variational principles
- Material frame indifference, the aspect of spacetime
- Weak nonlocality
- The problem of inertia

Generalizations

- Entropy flux is constitutive
- Derivative of a constraint can be a constraint
- Extensivity

Methods from thermodynamics

Pure thermodynamics?

- The heuristic road: thermostatics and the separation of divergences
- The rigorous way: Coleman-Noll and Liu procedures.

Benchmarks

- Ideal processes, variational principles
- Material frame indifference, the aspect of spacetime
- Weak nonlocality
- The problem of inertia

Generalizations

- Entropy flux is constitutive
- Derivative of a constraint can be a constraint
- Extensivity

Thermostatics, the hidden knowledge

Berezovski-Ván (Springer, 2017)
Biró et al. PLB, 2018.

Thermostatics of fluids: $S(E, V, M)$

From discrete to continuum: extensivity.
$\lambda S(E, V, M)=S(\lambda E, \lambda V, \lambda M) \leftrightarrow \exists s(e, v) \leftrightarrow E=T S-p V+\mu M$

Gibbs relation for fluids: specific quantities, $s(e, v)$

$$
d e=T d s-p d v=T d s+\frac{p}{\rho^{2}} d \rho, \quad e=T s-p v+\mu
$$

Gibbs relation for fluids: densities, $\rho_{s}\left(\rho_{e}, \rho\right)$

$$
\begin{gathered}
\rho_{e}=\rho e, \quad \rho_{s}=\rho s, \quad \rho=1 / v \\
d \rho_{e}=T d \rho_{s}+\mu d \rho, \quad \rho_{e}=T \rho_{s}+\mu \rho-p
\end{gathered}
$$

Thermostatics of elasticity: $S(E, \epsilon, \rho)$?

Deformation is not extensive.
Gibbs relation for elasticity: specific quantities, $s(e, \epsilon)$

$$
d e=T d s+\frac{\sigma}{\rho}: d \epsilon, \quad e=T s+\frac{\sigma}{\rho}: \epsilon+\mu .
$$

Gibbs relation for elasticity: densities, $\rho_{s}\left(\rho_{e}, \epsilon\right)$

$$
d \rho_{e}=T d \rho_{s}+\sigma: d \epsilon+\left(\mu+\frac{\sigma: \epsilon}{\rho}\right) d \rho, \quad \rho_{e}=T \rho_{s}+\sigma: \epsilon+\mu \rho
$$

Gibbs relation for elasticity: free energy density, $\rho_{f}(T, \epsilon, \rho)$

$$
d \rho_{f}=-\rho_{s} d T+\sigma: d \epsilon+\left(\mu+\frac{\sigma: \epsilon}{\rho}\right) d \rho, \quad \rho_{f}=\sigma: \epsilon+\mu \rho
$$

A fluid with a scalar internal variable: $s(e, \rho, \varphi, \nabla \varphi)$

Gibbs relation: specific quantities $s(e, \rho, \varphi, \nabla \varphi)$

$$
d u=T d s+\frac{p}{\rho^{2}} d \rho=d e-d\left(\varphi+\frac{\nabla \varphi \cdot \nabla \varphi}{8 \pi G \rho}\right) .
$$

Balances of mass, momentum and internal energy:

$$
\begin{gathered}
\dot{\rho}+\rho \nabla \cdot \mathbf{v}=0, \\
\rho \dot{\mathbf{v}}+\nabla \cdot \mathbf{P}=\mathbf{0}, \\
\rho \dot{e}+\nabla \cdot \mathbf{q}=-\mathbf{P}: \nabla \mathbf{v} .
\end{gathered}
$$

$$
\rho \dot{\mathbf{s}}+\nabla \cdot \mathbf{J}=\Sigma \geq 0
$$

Method: separation of divergences: $\dot{s}(e, \rho, \varphi, \nabla \varphi)+$ balances.

Weakly nonlocal internal energy: $s(e, \rho, \varphi, \nabla \varphi)$

$$
\begin{gathered}
\dot{\rho}+\rho \nabla \cdot \mathbf{v}=0, \quad \rho \dot{e}+\nabla \cdot \mathbf{q}=-\mathbf{P}: \nabla \mathbf{v} \\
\rho \dot{s}=\rho\left(\partial_{e} s \dot{e}+\partial_{\rho} s \dot{\rho}+\partial_{\varphi} s \dot{\varphi}+\partial_{\nabla \varphi} s(\nabla \varphi)^{\cdot}\right)= \\
=\frac{1}{T} \rho \dot{e}+\frac{p \dot{\rho}}{T} \frac{\rho}{\rho}-\frac{\rho}{T} \dot{\varphi}-\frac{1}{8 \pi G T \rho}(\nabla \varphi)^{2} \dot{\rho}-\frac{1}{4 \pi G T} \nabla \varphi \cdot(\nabla \varphi)^{\dot{C}}= \\
\ldots \\
=-\nabla \cdot\left[\frac{1}{T}\left(\mathbf{q}+\frac{\dot{\varphi}}{4 \pi G} \nabla \varphi\right)\right] \\
+\left(\mathbf{q}+\frac{\dot{\varphi}}{4 \pi G} \nabla \varphi\right) \cdot \nabla\left(\frac{1}{T}\right) \\
+\frac{\dot{\varphi}}{4 \pi G T}(\Delta \varphi-4 \pi G \rho) \\
-\left[\mathbf{P}-p \mathbf{l}-\frac{1}{4 \pi G}\left(\nabla \varphi \nabla \varphi-\frac{1}{2} \nabla \varphi \cdot \nabla \varphi \mathbf{l}\right)\right]: \frac{\nabla \mathbf{v}}{T} \geq 0
\end{gathered}
$$

Thermal, mechanical and gravitational thermodynamic fluxes and forces.

Dissipative gravitation?

Main result:

$$
\dot{\varphi}=\frac{l_{1}}{T}\left(\frac{\Delta \varphi}{4 \pi G}-\rho\right)-\frac{l_{12}}{T} \nabla \cdot \mathbf{v} .
$$

Ideal gravitation: Poisson equation

$$
\begin{gathered}
\Delta \varphi=4 \pi G \rho, \\
\mathbf{P}=p \mathbf{I}+\frac{1}{4 \pi G}\left(\nabla \varphi \nabla \varphi-\frac{1}{2} \nabla \varphi \cdot \nabla \varphi \mathbf{I}\right)
\end{gathered}
$$

Surface or volumetric?

$$
\begin{gathered}
\rho \dot{\mathbf{v}}+\nabla \cdot \mathbf{P}=\mathbf{0} \\
\nabla \cdot\left(\frac{1}{4 \pi G}\left(\nabla \varphi \nabla \varphi-\frac{1}{2} \nabla \varphi \cdot \nabla \varphi \mathbf{I}\right)\right)=\rho \nabla \phi, \\
\rho \dot{\mathbf{v}}+\nabla \cdot \mathbf{P}_{N S}=-\rho \nabla \phi .
\end{gathered}
$$

Extensive or not extensive?

Modified temperature?

$$
d u=d\left[e_{t o t}-\frac{v^{2}}{2}-\varphi-\frac{\nabla \varphi \cdot \nabla \varphi}{8 \pi G \rho}\right]=T d s-p d v
$$

Energy of gravitational field

$$
\text { density: } \quad \rho_{\text {fgrav }}=\frac{(\nabla \varphi)^{2}}{8 \pi G}, \quad \text { specific: } \quad e_{\text {fgrav }}=\frac{(\nabla \varphi)^{2}}{8 \pi G \rho}
$$

Long range forces \rightarrow not extensive.
From continuum to discrete: form dependence

$$
\begin{gathered}
\lambda S(E, V, M)=S(\lambda E, \lambda V, \lambda M) \leftrightarrow \exists s(e, v) \leftrightarrow E=T S-p V+\mu M \\
s(e, v, . .) \stackrel{\text { homogeneity }}{\rightleftarrows} \lambda S(E, V, M)=S(\lambda E, \lambda V, \lambda M)
\end{gathered}
$$

Summary

Laws of physics from thermodynamics

- A world with many roads. Heuristic is good, rigorous is better.
- Extended Thermodynamics
- Internal variables, weak nonlocality

Are internal variables internal?

- Thermodynamic rheology \rightarrow elasticity and local internal variable
- Phase fields (Cahn-Allen, Cahn-Hilliard) \rightarrow weakly nonlocal internal variable and constraints
- Generalized continua (Cosserat, Eringen, Mindlin) \rightarrow elasticity with weakly nonlocal dual internal variables
- Generalized heat conduction, rarefied gases \rightarrow hierarchy of internal variables with increasing tensorial orders
- Korteweg and quantum fluids \rightarrow fluid with weakly nonlocal density
- Thermodynamic gravitation \rightarrow mechanics with weakly nonlocal energy

Gravitation challenge

Prediction and verification

- Thermodynamic rheology \rightarrow confirmed (in rock experiments)
- Phase fields (Cahn-Allen, Cahn-Hilliard) \rightarrow accepted
- Generalized continua (Cosserat, Eringen, Mindlin) \rightarrow submitted
- Generalized heat conduction \rightarrow accepted + confirmed (in room temperature experiments) + presentations of F. Vázquez, T. Fülöp, M. Szücs
- Rarefied gases \rightarrow accepted + presentation of R. Kovács
- Korteweg and quantum fluids \rightarrow accepted
- Thermodynamic gravitation \rightarrow accepted (experiment??)

Gravitation: prediction

 andexperimental verification??

Eötvös balance

Sensitivity: $10^{-9} \rightarrow 10^{-11}$

Eötvös balance : the 5th force mystery

Eötvös ratio:

$$
\begin{gathered}
\eta=\Delta \kappa=2 \frac{\left|a_{1}-a_{2}\right|}{\left|a_{1}+a_{2}\right|}= \\
=\frac{m_{P 1}}{m_{l 1}}-\frac{m_{P 2}}{m_{l 2}}= \\
=C \Delta\left(\frac{B}{m}\right)
\end{gathered}
$$

Fischbach et al. (1986)

Jánossy Underground Physics Laboratory

- Laboratory preparation is finished
- Motorization is ready
- Cameras are installed
- Precision asimuth readout is
c working
- Software for readout and evaluation is written
- Test masses are manufactured and inserted
- EP measurement has been started last week

Sensitivity : $10^{-9} \rightarrow 10^{-11}$

Thank you for your attention!

