Weakly nonlocal thermodynamics and Newtonian gravitation

Ván Péter

MTA WISTEF Research Centre for Physics,

Department of Theoretical Physics; BME, Department of Energy Engineering; Montavid Thermodynamic Research Group

Barcelona, 21/05/2019

Collaboration with Sumiyoshi Abe and Robert Kovács

Outline

- 1 About the origin of evolution equations
- 2 Extensivity
- 3 Newtonian gravitation
- 4 Eötvös 100

Evolution with dissipation

Variational principles

- Ideal materials without dissipation
- Dissipation potentials? Gyarmati principle?
- There are many different variational principles for dissipative processes

Mixed strategies

- Phase fields, Ginzburg-Landau
- GENERIC

Pure thermodynamics?

- The heuristic road: thermostatics and the separation of divergences
- The rigorous way: Coleman-Noll and Liu procedures
- Rigorously blocked? Stability and material frame indifference

Methods from thermodynamics

Pure thermodynamics? Extended and internal variables

- The heuristic road: thermostatics and the separation of divergences
- The rigorous way: Coleman-Noll and Liu procedures. Blocked?

Benchmarks

- Ideal processes, variational principles
- Material frame indifference, the aspect of spacetime
- Weak nonlocality
- The problem of inertia

Generalizations

- Entropy flux is constitutive
- Derivative of a constraint can be a constraint
- Extensivity

Methods from thermodynamics

Pure thermodynamics?

- The heuristic road: thermostatics and the separation of divergences
- The rigorous way: Coleman-Noll and Liu procedures.

Benchmarks

- Ideal processes, variational principles
- Material frame indifference, the aspect of spacetime
- Weak nonlocality
- The problem of inertia

Generalizations

- Entropy flux is constitutive
- Derivative of a constraint can be a constraint
- Extensivity

Thermostatics, the hidden knowledge

Berezovski-Ván (Springer, 2017) Biró et al. PLB, 2018.

Thermostatics of fluids: S(E, V, M)

From discrete to continuum: extensivity.

$$\lambda S(E, V, M) = S(\lambda E, \lambda V, \lambda M) \leftrightarrow \exists s(e, v) \leftrightarrow E = TS - pV + \mu M$$

Gibbs relation for fluids: specific quantities, s(e, v)

$$de = Tds - pdv = Tds + \frac{p}{\rho^2}d\rho, \qquad e = Ts - pv + \mu.$$

Gibbs relation for fluids: densities, $\rho_s(\rho_e, \rho)$

$$ho_{
m e}=
ho{
m e}, \qquad
ho_{
m s}=
ho{
m s}, \qquad
ho=1/{
m v}$$

$$d\rho_e = Td\rho_s + \mu d\rho, \qquad \rho_e = T\rho_s + \mu \rho - p.$$

Thermostatics of elasticity: $S(E, \epsilon, \rho)$?

Deformation is not extensive.

Gibbs relation for elasticity: specific quantities, $s(e, \epsilon)$

$$de = Tds + \left\lceil \frac{\sigma}{\rho} \right\rceil : d\epsilon, \qquad e = Ts + \frac{\sigma}{\rho} : \epsilon + \mu.$$

Gibbs relation for elasticity: densities, $\rho_s(\rho_e, \epsilon)$

$$d\rho_{e} = Td\rho_{s} + \boxed{\sigma} : d\epsilon + \left(\mu + \frac{\sigma : \epsilon}{\rho}\right) d\rho, \qquad \rho_{e} = T\rho_{s} + \sigma : \epsilon + \mu\rho.$$

Gibbs relation for elasticity: free energy density, $\rho_f(T, \epsilon, \rho)$

$$d\rho_f = -\rho_s dT + \sigma : d\epsilon + \left(\mu + \frac{\sigma : \epsilon}{\rho}\right) d\rho, \qquad \rho_f = \sigma : \epsilon + \mu \rho.$$

A fluid with a scalar internal variable: $s(e, \rho, \varphi, \nabla \varphi)$

Gibbs relation: specific quantities $s(e, \rho, \varphi, \nabla \varphi)$

$$du = Tds + \frac{p}{\rho^2}d\rho = de - d\left(\varphi + \frac{\nabla\varphi\cdot\nabla\varphi}{8\pi G\rho}\right).$$

Balances of mass, momentum and internal energy:

$$\begin{split} \dot{\rho} + \rho \nabla \cdot \mathbf{v} &= 0, \\ \rho \dot{\mathbf{v}} + \nabla \cdot \mathbf{P} &= \mathbf{0}, \\ \rho \dot{e} + \nabla \cdot \mathbf{q} &= -\mathbf{P} : \nabla \mathbf{v}. \end{split}$$

$$ho\dot{s} +
abla \cdot \mathbf{J} = oldsymbol{\Sigma} \geq 0$$

Method: separation of divergences: $\dot{s}(e, \rho, \varphi, \nabla \varphi)$ + balances.

Weakly nonlocal internal energy: s(e,
ho, arphi,
abla arphi)

$$\begin{split} \dot{\rho} + \rho \nabla \cdot \mathbf{v} &= 0, \quad \rho \dot{e} + \nabla \cdot \mathbf{q} = -\mathbf{P} : \nabla \mathbf{v} \\ \rho \dot{s} &= \rho \left(\partial_{e} s \dot{e} + \partial_{\rho} s \dot{\rho} + \partial_{\varphi} s \dot{\varphi} + \partial_{\nabla \varphi} s (\nabla \varphi)^{\cdot} \right) = \\ &= \frac{1}{T} \rho \dot{e} + \frac{p}{T} \frac{\dot{\rho}}{\rho} - \frac{\rho}{T} \dot{\varphi} - \frac{1}{8\pi G T \rho} (\nabla \varphi)^{2} \dot{\rho} - \frac{1}{4\pi G T} \nabla \varphi \cdot (\nabla \varphi)^{\cdot} = \\ & \dots \\ &= -\nabla \cdot \left[\frac{1}{T} \left(\mathbf{q} + \frac{\dot{\varphi}}{4\pi G} \nabla \varphi \right) \right] \\ &+ \left(\mathbf{q} + \frac{\dot{\varphi}}{4\pi G T} (\Delta \varphi - 4\pi G \rho) \right] \end{split}$$

Thermal, mechanical and gravitational thermodynamic fluxes and forces.

 $\left\| - \left\| \mathbf{P} - \rho \mathbf{I} - \frac{1}{4\pi G} \left(
abla arphi
abla arphi - \frac{1}{2}
abla arphi \cdot
abla arphi
ight)
ight\| : rac{
abla \mathbf{v}}{T} \geq 0$

Dissipative gravitation?

Main result:

$$\dot{arphi} = rac{I_1}{T} \left(rac{\Delta arphi}{4\pi G} -
ho
ight) - rac{I_{12}}{T}
abla \cdot \mathbf{v}.$$

Ideal gravitation: Poisson equation

$$\Delta arphi = 4\pi G
ho,$$
 $\mathsf{P} = p \mathsf{I} + rac{1}{4\pi G} \left(
abla arphi
abla arphi - rac{1}{2}
abla arphi \cdot
abla arphi \mathsf{I}
ight)$

Surface or volumetric?

$$\begin{split} \rho \dot{\mathbf{v}} + \nabla \cdot \mathbf{P} &= \mathbf{0}, \\ \nabla \cdot \left(\frac{1}{4\pi G} \left(\nabla \varphi \nabla \varphi - \frac{1}{2} \nabla \varphi \cdot \nabla \varphi \mathbf{I} \right) \right) &= \rho \nabla \phi, \\ \rho \dot{\mathbf{v}} + \nabla \cdot \mathbf{P}_{NS} &= -\rho \nabla \phi. \end{split}$$

Extensive or not extensive?

Modified temperature?

$$du = d\left[e_{tot} - rac{v^2}{2} - arphi - rac{
abla arphi \cdot
abla arphi}{8\pi G
ho}
ight] = T ds - p dv$$

Energy of gravitational field

density:
$$ho_{fgrav} = \frac{(\nabla \varphi)^2}{8\pi G}$$
, specific: $e_{fgrav} = \frac{(\nabla \varphi)^2}{8\pi G \rho}$

Long range forces \rightarrow not extensive.

From continuum to discrete: form dependence

$$\lambda S(E, V, M) = S(\lambda E, \lambda V, \lambda M) \leftrightarrow \exists s(e, v) \leftrightarrow E = TS - pV + \mu M$$

$$s(e, v, ..) \stackrel{homogeneity}{\longleftrightarrow} \lambda S(E, V, M) = S(\lambda E, \lambda V, \lambda M)$$

Summary

Laws of physics from thermodynamics

- A world with many roads. Heuristic is good, rigorous is better.
- Extended Thermodynamics
- Internal variables, weak nonlocality

Are internal variables internal?

- ullet Thermodynamic rheology o elasticity and local internal variable
- ullet Phase fields (Cahn-Allen, Cahn-Hilliard) o weakly nonlocal internal variable and constraints
- ullet Generalized continua (Cosserat, Eringen, Mindlin) o elasticity with weakly nonlocal dual internal variables
- \bullet Generalized heat conduction, rarefied gases \to hierarchy of internal variables with increasing tensorial orders
- ullet Korteweg and quantum fluids o fluid with weakly nonlocal density
- ullet Thermodynamic gravitation o mechanics with weakly nonlocal energy

Gravitation challenge

Prediction and verification

- Thermodynamic rheology → confirmed (in rock experiments)
- ullet Phase fields (Cahn-Allen, Cahn-Hilliard) o accepted
- ullet Generalized continua (Cosserat, Eringen, Mindlin) o submitted
- Generalized heat conduction → accepted + confirmed (in room temperature experiments) + presentations of F. Vázquez, T. Fülöp, M. Szücs
- Rarefied gases → accepted + presentation of R. Kovács
- ullet Korteweg and quantum fluids o accepted
- Thermodynamic gravitation \rightarrow accepted (experiment??)

Gravitation: prediction and experimental verification??

Eötvös Loránd

1848-1919

100th anniversary of Roland Eötvös (1848-1919), physicist, geophysicist, and innovator of higher education Commemorated in association with UNESCO

 Eőtvős Loránd (1848-1919) fizikus, geofizikus és a felsőoktatás megújítójának 100. évfordulója Az UNESCO-val közösen emilékezve

Eötvös balance

Sensitivity: $10^{-9} o 10^{-11}$

Eötvös balance: the 5th force mystery

Eötvös ratio:

$$\eta = \Delta \kappa = 2 \frac{|a_1 - a_2|}{|a_1 + a_2|} =$$

$$= \frac{m_{P1}}{m_{I1}} - \frac{m_{P2}}{m_{I2}} =$$

$$= C\Delta \left(\frac{B}{m}\right)$$

Fischbach et al. (1986)

Jánossy Underground Physics Laboratory

- Laboratory preparation is finished
- Motorization is ready
- Cameras are installed
- Precision asimuth readout is working
- Software for readout and evaluation is written
- Test masses are manufactured and inserted
- EP measurement has been started last week

Sensitivity : $10^{-9} \rightarrow 10^{-11}$

Thank you for your attention!

